K CET 2024 Physics Questio n PaperCodeC4

1. The ratio of molar specific heats of oxygen is
(A) 1.4
(B) 1.67
(C) 1.33
(D) 1.28

Ans. A
Sol.

$\square \square 12 \square$

$\mathrm{f}=$ number of degrees of freedom
$\mathrm{f}=5$ for O 2
For a particle executing simple harmonic
motion (SHM), at its mean position
(A) Velocity is zero and acceleration is maximum
(B) Velocity is maximum and acceleration is zero
(C) Both velocity and acceleration are maximum
(D) Both velocity and acceleration are zero

Ans. B

a)
3. A motor-cyclist moving towards a huge cliff with a speed of $18 \mathrm{kmh}-1$, blows a horn of source frequency 325 Hz . If the speed of the sound in air is $330 \mathrm{~ms}-1$, the number of beats heard by him is
(A) 5
(B) 4
(C) 10
(D) 7

Ans. A

4. A body has a charge of $\quad[3.2 \square C$. The number of excess electrons it has is
(A) 5.12 D 1025
(B) $5 \square 1012$
(C) $2 \square 1013$
(D) $5.12 \square 1013$

Ans. C
Sol. Qune
$n \mathrm{Q} \frac{\mathrm{Q}}{\mathrm{e}} \frac{3.2 \mathrm{~T} 10 \mathrm{C} 6}{1.6 \square 10 \square 19}$
n2ㅁㄴㅇㅣ
5. A point charge A of $\square 1 O D C$ and another point charge B of C 20 C C are kept 1 m apart in free space. The electrostatic force on A due to B is Fland the electrostatic force on B due to A is 간. Then
(A) Flocif
(B) Flatio
(C) 2月14072
(D) FIDF2

Ans. B
Sol. Force on 1st charge due to 2 nd charge is equal to force on 2 nd charge due to first charge. PlouF?
6.

A uniform electric field ED3DIO5NCDII acting along the positive Y-axis. The electric flux through a rectangle of area 10 cm 030 cm whose plane is parallel to the $\mathrm{Z}-\mathrm{X}$ plane is
(A) $12 \square 103 \mathrm{Vm}$
(B) $9 \square 103 \mathrm{Vm}$
(C) $15 \square 103 \mathrm{Vm}$
(D) $18 \square 103 \mathrm{Vm}$

Ans. B

प9103VDm
7. The total electric flux through a closed spherical surface of radius ' r ' enclosing an electric dipole of dipole moment 2aq is (Give CODpermittivity of free space)
(A) Zero
(B) $\frac{4}{6}$
(C) $\frac{2 q}{\square}$
(D) $\frac{8 \square r 2 q}{\square}$

Ans. A
Sol. As net charge is zero.

8．Under electrostatic condition of a charged conductor，among the follawhiliag statements is true？
（A）The electric field on the surface of a charged
conductor is $\overline{2 \square 0} \quad \square$ ，where Dis the surface charge density
（B）The electric potential inside a charged conductor is always zero
（C）Any excess charge resides on the surface of the conductor
（D）The net electric filed is tangential to the surface of the conductor
Ans．C
Sol．The excess charge resides on the surface of the conductor．
A cube of side 1 cm contains 100 molecules
9．each having an induced dipole moment of $0.2 \mathrm{D1076CDmin}$ an external electric field of
$4 N C D 1$ ．The electric susceptibility of materials is \qquad C2ND1mD2
（A） 50
（B） 5
（C） 0.5
（D） 0.05
Ans．B
Sol．XPe［Dn

\bar{E}

$$
\overline{\square 10 \square 2 \square \square 4}
$$

10．A capacitor of capacitance 5DF is charged by a battery of emf 10V．At an instant of time，the potential difference across the capacitors is 4 V and the time rate of change of potential difference across the capacitor is $0.6 \mathrm{Vs} \square 1$ ． Then the time rate at which energy is stored the capacitor at the instant is
（A）120W
（B） 3 DW
（C）Zero
（D） $30 \square \mathrm{~W}$

Ans．A
Sol．ulDCV ${ }^{2}$
du $\mathbb{C} 2 V d V \square C V d V$
$\frac{\mathrm{dt}}{\mathrm{dt}} \overline{\mathrm{dt}} \overline{\mathrm{dt}}$
$\frac{\mathrm{du}}{\mathrm{dt}} \mathrm{\square 5} 10 \quad \square 6 \boxed{4} \square 0.6 \mathrm{I2} 10 \square \quad \square 6$

11．E is the electric field inside a conductor whose material has conductivity \square and resistivity \square ． The current density inside the conductor is j ．
The correct form of Ohm＇s law is
（A） $\mathrm{E} \square \mathrm{a} \mathrm{j}^{\text {］}}$
（B）${ }^{\text {flobe }}$
（C）${ }^{\square} \square \square j^{\square}$
（D）E．j口प

Ans．C
Sol．Ohms law VDiR

$$
\begin{aligned}
& \text { VDigu } \\
& \frac{\mathrm{Vi}}{\square} \overline{\mathrm{~A}}
\end{aligned}
$$

12．政

In the circuit shown，the end A is at potential VO and end B is grounded．The electric current I indicated in the circuit is

（A）$\frac{\mathrm{VO}}{\mathrm{R}}$
（B）$\frac{2 \mathrm{VO}}{\mathrm{R}}$
（C）$\frac{3 \mathrm{VO}}{\mathrm{R}}$
（D）$\frac{\mathrm{VO}}{3 \mathrm{R}}$

Ans．D
Sol．
iVロO
$\overline{\text { Reff }}$
Refflergirlur
13．The electric current flowing through a given conductor varies with time as shown in the graph below．The number of free electrons which flow through a given cross－section of the conductor in the time interval ODtD2Os is

（A） $3.125010 \quad 19$
（B） $1.6 \square 10 \quad 19$
（C） $6.25 \square 1018$
（D） $1.625 \square 10 \quad 18$

Ans．A
Sol．Qhe \square areaunderlatgraph

$$
\mathrm{n} \square \frac{5000 \square 10 \square^{3}}{1.6 \square 10 \square^{19}} \square 3.125 \square 10 \quad 19
$$

14. The I-V graph for a conductor at two different temperatures 1000C and 4000C is as shown in the figure. The temperature coefficient of resistance of the conductor is about (in per degree Celsius)

(A) $3\left[10 \square^{3}\right.$
(B) $6 \square 10 \square^{3}$
(C) $9 \square 10 \square^{3}$
(D) $12010 \square^{3}$

Ans. A
Sol. $\quad R_{1} \square \frac{1}{\tan 450} \square 1$
$\mathrm{R} 2 \square \frac{1}{\tan 300} \square \sqrt{3}$$\frac{R 2 \square R 1}{R 1 t 2 \square R 2 t 1} \square 3.22 \square 10 \square 3 / O C$
15. An electric blub of $60 \mathrm{~W}, 120 \mathrm{~V}$ is to be connected to 220 V source. What resistance should be connected in series with the bulb, so that the bulb glows properly?
(A) $50 \square$
(B) $100 \square$
(C) $200 \square$
(D) $288 \square$

Ans. C

$$
\mathrm{R} \quad 60
$$

IP60170]A
$\bar{V} 1202$
$R \square \frac{V}{I} \square \frac{220}{1 / 2} \square 440^{\text {T }}$
Rs D 200 ?
16. In an experiment to determine the temperature coefficient of resistance of a conductor, a coil of wire X is immersed in a liquid. It is heated by an external agent. A meter bridge set up is used to determine resistance of the coil X at different temperatures. The balancing points measured at temperatures t1DOOC and t201000C are 50 cm and 60 cm respectively. If the standard resistance taken out is SD4D in both trials, the temperature coefficient of the coil is

(A) $0.05^{\circ} \mathrm{C}^{\square}$
(B) $0.02^{\circ} \mathrm{C}^{\square 1}$
(C) $0.005^{\circ}{ }^{\square}$
(D) 2.00 Cl

Ans. C
Sol. RD $\frac{\mathrm{S} /}{100 \mathrm{l}}$
R1 $\square 4 \square$
R $\square 6$ $\square \square$

$\square \square 0.005^{\circ} \mathrm{C}^{\square}$
A moving electron produces
17. (A) only electric filed
(B) both electric and magnetic field
(C) only magnetic field
(D) neither electric nor magnetic field

Ans. B
Sol. Moving electron produce both electric and magnetic field.

18．A coil having 9 turns carrying a current produces magnetic filedB1 at the centre．Now the coil is rewounded into 3 turns carrying same current．Then the magnetic field at the centre B2D（A）B1
$\overline{9}$
（B） 9 Bl
（C） $3 \mathrm{~B}_{1}$
（D）$\frac{B 1}{3}$

Ans．A
Sol．

No．of turns DN 1 C 9
B1 $\square \frac{\square_{0} N_{i} i}{2 R} \square \frac{9 \square_{0} i}{2 R}$

$B_{2} \square \frac{\square O N 2 i}{2 r} \square \frac{0 i}{2 R}$

$\square \mathrm{B}_{2} \square \frac{\mathrm{~B}_{1}}{9}$
19.

A particle of specific charge quCkgll is \bar{m}
projected the origin towards positive x－axis with the velocity 10 msal in a uniform magnetic field B © $\mathrm{a} 2 \mathrm{k}^{\wedge} \mathrm{T}$ ．The velocity v D of particle after time t10s will be（inmsal）

$$
\overline{12}
$$

（A） $5\left(i^{\wedge} \square j^{\wedge}\right)$
（B） $5\left(\mathrm{i}^{\wedge} \square 3{ }^{\circ}\right)$
（C） $\left.5(3)^{\circ} \square j^{\wedge}\right)$
（D） $\left.5(3)^{\wedge} \square j^{\wedge}\right)$

Ans．

$$
\text { Time period T2 } \frac{\mathrm{m} 2 \mathrm{anc}}{\mathrm{qB}} \mathrm{ma2}
$$

Particle will be at point P after time
tlitasal
$\overline{12} \overline{1212}$－

\square Velocity of particle at point P v밍ocos30i＾ロlOsin30j＾

valas（

20．The magnetic field at the centre of a circular coil of radius R carrying current I is 64 times the magnetic field at a distance \times on its axis from the centre of the coil．Then the value of x is
（A）R15
4
（B）R3
（C）R
（D）$R \prod$
Ans．D
Sol．BcentreD64Baxis
$B_{C} \square \stackrel{\square E}{2 R} \square 64 \frac{\square_{0} I^{2}}{2\left(R^{2} \square x^{23}\right)^{2}}$
（R2ロx $\left.{ }^{23}\right)^{2} \quad \square 64 R 3 \square(4 R) 3$
（R2ロx ${ }^{2}$ ） D 16 R
$15 R^{2} \square x^{2}$
$x \square \sqrt{15 R}$
21．Magnetic hysterisis is exhibited by \qquad magnetic materials．
（A）only para
（B）only dia
（C）only ferro
（D）both para and ferro
Ans．C
Sol．Conceptual
22．Magnetic susceptibility of Mg at 300 K is 1．201075．What is its susceptibility at 200 K ？
（A）18प1005
（B） $180 \square 1005$
（C） $1.8 \mathrm{Bl} 10 \square 5$
（D） $0.18 \mathrm{D1005}$

Ans．C
Sol． 1 IL
$\bar{\top}$
니TTV2
$\overline{\mathrm{C}} 7^{-} \quad \overline{\mathrm{T} 2}$
प1．2 $210{ }^{\square 5} \square \frac{300}{200}$
ㅁ．8100 5
23. A uniform magnetic field of strength $B C 2 m T$ exists vertically downwards. These magnetic field lines pass through a closed surface as shown in the figure. The closed surface consists of a hemisphere S 1 , a right circular cone S 2 and a circular surface S 3 . The magnetic flux through S1 and S2 are respectively

(B) $\Phi \mathrm{S}_{1} \square \mathrm{D} 20 \square \mathrm{~Wb}, \Phi \mathrm{Sal}_{2} \quad 20 \mathbb{W b}$
(C) $\Phi \mathrm{S}_{1} \mathrm{C} 40 \square \mathrm{~Wb}, \Phi \mathrm{SD}_{2} \quad 40 \mathrm{WVb}$
(D) Φ S

Ans. A
Sol. Flux entering = Flux leaving
Flux entering
प्B.A
$\square 270 \quad{ }^{\square 3} \square \square \square_{\square}^{10^{2}} \square 10{ }^{\square 4}$

- 20 Dwb

Flux leaving $\square \square R O \mathrm{Wwb}$
24.

In the figure, a conducting ring of certain resistance is falling towards a current carrying straight long conductor. The ring and conductor are in the same plane. Then the

(A) induced electric current is zero
(B) induced electric current is anticlockwise
(C) induced electric current is clockwise
(D) ring will come to rest

Ans. C
Sol. Conceptual
25. An induced current of 2 A flows through a coil. The resistance of the coil is 10Ω. What is the change in magnetic flux associated with the coil in 1 ms ?
(A) $0.2 \mathrm{\square 10} \mathrm{\square 2} \mathrm{~Wb}$
(B) $2 \mathrm{D10} \mathrm{\square 2} \mathrm{~Wb}$
(C) 22 al 10 ZWb
(D) $0.22 \square 10 \square 2 \mathrm{~Wb}$

Ans. B
Sol.
$\frac{e d t}{d t}$
iR d IL
$2 \mathrm{ClOL} \frac{\mathrm{dD}}{1 \mathrm{1} 10^{\sqrt{3}}}$

- 270 Cl wb

26. A square loop of side length 'a' is moving away from an infinitely long current carrying conductor at a constant speed 'v' as shown. Let 'x' be the instantaneous distance between the long conductor and side $A B$. The mutual inductance (M) of the square loop - long conductor pair changes with time $\square \mathrm{t} \square$ according to which of the following graphs?

(A)

(B)

(C)

(D)

Ans. C
2Sol. MAOONTN2iロr2
" M " independent of " t "
27. Which of the following combinations should be selected for better tuning of an LCR circuit used for communication?
(A) RL20 $\Omega, L \square 1.5 \mathrm{H}, \mathrm{CD} 35 \mathrm{~F}$
(B) $\mathrm{R} \square 25 \Omega, \mathrm{~L}[2.5 \mathrm{H}, \mathrm{C} 45 \mathrm{BF}$
(C) RD25 $\Omega, L \square 1.5 \mathrm{H}, \mathrm{CD} 45 \mathrm{FF}$
(D) RD15 $, \mathrm{L} \square 3.5 \mathrm{H}, \mathrm{CD} 30 \mathrm{~F}$

Ans. D
Sol. For good communication Q factor should be high

$$
\mathrm{Qa}_{\overline{\mathrm{R}}} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}}
$$

$\frac{13.5}{53}$
$\square 0.022$
28.

In an LCR series circuit, the value of only capacitance C is varied. The variation of resonance frequency
resulting function of C can be represented as
(A)

(B)

(C)

(D)

Ans. C
Sol. flol $\overline{2 \square Q} \sqrt{\frac{L}{L}}$
29.

The figure shows variation of R, XL and XC with frequency 'f' in a series LCR circuit. Then for what frequency point is the circuit capacitive?

(A) B
(B) D
(C) A
(D) C

Ans. C
Sol. Conceptual
30. Electromagnetic waves are incident normally on a perfectly reflecting surface having surface area A. If I is the intensity of the incident electromagnetic radiation and c is the speed of light in vacuum, the force exerted by the electromagnetic wave on the reflecting surface is
(A) 21 A
(B) $\frac{I A}{C}$
(C) $\underset{2 \mathrm{C}}{1 \mathrm{~A}}$
(D) $\stackrel{1}{2 A c}$

Ans. A
Sol. $F 2 \left\lvert\, \frac{A}{C}\right.$
31. The final image formed by an astronomical telescope is
(A) realuaf intread diminished ashed
(D) virtual, inverted and magnified

Ans. D
Sol.
32.
t_{0}^{f} the angle of minimum deviation is equal angle of a prism for an equilateral prism, then the speed of light inside the prism is \qquad
(A) $3 \square 108 \mathrm{msD1}$
(B) $23 \sqrt{\square 108} \mathrm{msll}$ (C) 30108 msDl $\sqrt{ }$
(D) $\frac{\sqrt{3}}{2}$

Ans. C
$\sin \square A D d m=0$
Sol. \quad ㅁ

ADdm=600
$\sin 600^{\circ} 0$
$\sin 30$
-3
$\frac{\operatorname{cose3}}{\mathrm{Cm}} \sqrt{ }$
$\mathrm{cm} \frac{\mathfrak{\xi}}{\sqrt{ }}$

33．A luminous point object O is placed at a distance 2R from the spherical boundary separating two transparent media of refractive
indices n 1 and n 2 as shown，where R is the


```
\overline{3}}
```

the image is
obtained at a distance from P equal to

（A） 30 cm in the rarer medium
（B） 30 cm in the denser medium
（C） 18 cm in the rarer medium
（D） 18 cm in the denser medium

Ans．A

\qquad
$\begin{array}{lll}3 / 2 \square & 4 \quad 3 / 2 \square 4 / 3 \square \\ \text { 3 } & 4 \square 2 R \square \quad R\end{array}$
VIU3RED30cm
34．An equiconvex lens of radius of curvature 14 cm is made up of two different materials． Left half and right half of vertical portion is made up of material of refractive index 1.5 and 1.2 respectively as shown in the figure．If a point object is placed at a distance of 40 cm ， calculate the image distance．

（A） 25 cm
（B） 50 cm
（C） 35 cm
（D） 40 cm
Ans．
Sol．Effective focal length
$\frac{1}{\mathrm{f}} \square \frac{1}{\mathrm{f} 1} \square \frac{1}{\mathrm{f} 2} \square \frac{\square \square \square 1 \square \square_{2} \square \square}{\mathrm{R}}$
$\square \mathrm{f} \square 20 \mathrm{~cm}$
$\mathrm{f} \square \frac{1}{\mathrm{~V}} \square_{\text {U }}^{1} \square \frac{1}{20} \square \frac{1}{\mathrm{~V}} \frac{\square \square \square}{\square \boxed{40} \square} \square \mathrm{v} \square 40 \mathrm{~cm}$

35．A galaxy is moving away from the Earth so that a spectral line at 600 nm is observed at 601 nm ．Then the speed of the galaxy with respect to the Earth is
（A） 500 km s l
（B） 50 km s sl
（C） 200 km s l 1
（D） 20 km s sl
Ans．A
Sol．$\underset{\text { 明明 }}{\text { 自 }} \bar{C}$

$$
\begin{aligned}
& \frac{1}{600} \square \frac{\mathrm{v}}{3 \square 10^{8}} \\
& \mathrm{~V} 3 \square 108 \square \square 500 \mathrm{~km} / \mathrm{s} \\
& \frac{600}{6}
\end{aligned}
$$

36．Three polaroid sheets are co－axially placed as indicated in the diagram．Pass axes of the polaroids 2 and 3 make 30L and 907 with pass axis of polaroid sheet 1 ．If IO is the intensity of the incident unpolarised light entering sheet 1 ， the intensity of the emergent light through sheet 3 is

（A）zero
（B）$\frac{3 I_{0}}{32}$
（C）$\frac{3 I_{0}}{8}$
（D）$\frac{3 I_{0}}{16}$
Ans．B
Sol． $\operatorname{Ires} \square \frac{d}{2} \cos 2 \square \sin 2 \square$
－bos $300 \sin 230$
2
$\square \frac{310}{32}$
37. In Young's double slit experiment, an electron beam is used to produce interference fringes of width $\square 1$. Now the electron beam is replaced by
a beam of protons with the same experimental
set-up and same speed. The fringe width obtained is $\mathrm{\square 2}$. The correct relation between $\mathrm{\square l}$ and C 2 is (A) पाप्य2
(B) No fringes are formed
(C) 디믄
(D) $\mathrm{Dl\mid c} 2$

Ans. D

hh1ㅁㅁㅁㅁ
$\overline{p m v} \quad \bar{m}$
DmeDmp

38. Light of energy E falls normally on a metal of work function E. The kinetic energ the photo electrons are
(A) $\mathrm{K}_{2} \mathrm{EQ}_{3}$
(B) $\mathrm{KED}_{\overline{3}}$
(C) ODK2ED
(D) ODKED
3
$\overline{3}$

Ans. C
Sol. KEmaxDEDwo
DEE2EDC $\frac{}{3}$
KE lies from O to $\frac{2 E}{3}$
39. The photoelectric work function for photo metal is $2 \square 4 \mathrm{eV}$. Among the four wavelengths, the wavelength of light for which photoemission does not take place is
(A) 200 nm
(B) 300 nm
(C) 700 nm
(D) 400 nm

Ans. C
Sol. wOL2.4ev
$\square 0 \square \frac{1240012400}{\mathrm{WO}} \square \frac{1}{2.4}$
[005166AO
7516.6nmDmaximum

पFor ㅁ700nmphoto electric effect does not take place.
40. In alpha particle scattering experiment, if v is the initial velocity of the particle, then the distance of closest approach is d. If the velocity is doubled, then the distance of closest approach becomes
(A) 4 d
(B) 2 d (C) d

$$
\overline{2}
$$

(D) d

$$
\frac{1}{4}
$$

Ans. D
Sol. V21] \bar{d}

41. The ratio of area of first excited state to ground state of orbit of hydrogen atom is
(A) 1:16
ies $\square K(B) Q . \neq$
(C) $4: 1$
(D) $16: 1$

Ans. D
Sol. Area Dr2Dn4

A2 $\square \mathrm{n} 2 \square$	$\square 1 \square$
$16 \square$	

The ratio of volume of Al 27 nucleus to its
surface area is पGivenROL1.2[
(A) 2.1 D 10 O 15 m
(B) $1.3 \mathrm{D} 10 \square 15 \mathrm{~m}$
(C) $0.22 \square 10 \square 15 \mathrm{~m}$
(D) $1.2 \mathrm{D10} \mathrm{\square 15m}$

Ans. D

Sol. $\frac{V}{\text { Area }} 4 \overline{\mathrm{DR} 23}-$

- $\frac{1}{3} \square R^{1 / 30}$
$\square_{3}^{1} \square 1.2 \square 10 \square 5 \square \square 27$ 色
$01.210 \quad{ }^{[15} \mathrm{m}$

43．Consider the nuclear fission re action On D235492UD148956BaC36KrD31On ．Assuming all
the kinetic energy is carried away by the fast neutrons only and total binding energies of 932， 1448956 Ba ，and 36 Kr to be $1800 \mathrm{MeV}, 1200$ MeV and 780 MeV respectively，the average kinetic energy carried by each fast neutron is （in MeV）
（A） 200
（B） 180
（C） 67
（D） 60

Ans．
Sol．K．EB．Eofproducts日B．Eefreactantsn日
$\square \frac{1980 \square 1800}{3} \square 60 \mathrm{MeV}$

44．The natural logarithm of the activity R of a radioactive sample varies with time t as shown． At $\mathrm{t}=0$ ，there are NOundecayed nuclei．Then NO is equal to 目五ke e207． 5 甼

（A）7，500
（B）3，500
（C） 75,000
（D）1，50，000

Ans．C
Sol．logeROL2
RODe2 7.5
ROUNo

$\operatorname{NoL} \frac{R 07.5 \square}{\square} \frac{\square}{104} \square 75,000$
45．Depletion region in an unbiased semiconductor diode is a region consisting of
（A）both free electrons and holes
（B）neither free electrons nor holes
（C）only free electrons
（D）only holes
Ans．B
Sol．As recombination of holes and electrons takes place，it is free from charge carriers．

46．The upper level of valence band and lower level of conduction band overlap in the case of
（A）silicon
（

Ans．B
Sol．Copper is a conductor，In conductors，V．B and C－B are overlapped

47．In the diagram shown，the Zener diode has a reverse breakdown voltage of VZ．The current tasistragncetReisllo玉ble
current through the Zener diode is

（A）$\frac{\mathrm{vODvz}}{\mathrm{RS}}$
（B）$\frac{\mathrm{voDvz}}{\mathrm{RL}}$
（C）$\frac{\mathrm{V}_{\mathrm{z}}}{\mathrm{RL}}$
（D）

Ans．D
Sol．

IDIzILIIzDIDIL

48．A p－n junction diode is connected to a battery of emf 5.7 V in series with a resistant 5 kD such that it is forward biased．If the barrier potential of the diode is 0.7 V ，neglecting the diode resistance，the current in the circuit is
（A） 1.14 mA
（B） 1 mA
（C） 1 A
（D） 1.14 A
Ans．B
VIVi．D．50B5707nullou3almA
Sol．

$$
\overline{\mathrm{RS}} \overline{50103} \overline{5}
$$

49. An athlete runs along a circular track of diameter 80 m . The distance travelled and the magnitude of displacement of the athlete when he covers 3th
(A) 60ロ,402 4 of the circle is (in m)
(C) 1200,802
(B) 400,602
$\sqrt{ }$
(D) $80 \square, 1202 \sqrt{ }$

Ans. A

Displacement $\sqrt[2]{ } \sqrt{R} \square 402$ A \sqrt{n} ong the given pair
50. of vectors, the resultant

Qfectors vectors can never be 3 units. The are
(A) 1 unit and 2 units
(B) 2 units and 5 units
(C) 3 units and 6 units
(D) 4 units and 8 units

Ans. D
Sol. Resultant of two vectors is always lies between maximum $(P+Q)$ and minimum $(P \sim Q)$ resultant A block of certain mass is placed on a rough
51. inclined plane. The angle between the plane and the horizontal is 300. The coefficients of static and kinetic frictions between the block and the inclined plane are 0.6 and 0.5 the
respectively Then the magnitude of acceleration of the block is [Take $\mathrm{g}=10 \mathrm{~ms}-2$]

(A) $2 \mathrm{~ms}-2$
(B) zero
(C) $0.196 \mathrm{~ms}-2$
(D) $0.67 \mathrm{~ms}-2$

Ans. B

$\square 0.6 \mathrm{mg} \square \cos 30$
$\square 0.33 \mathrm{mmg}$
$m g \sin \square \square^{m g \sin 30 m g \square} \frac{2}{2}$
As $\mathrm{f}_{\mathrm{s}} \mathrm{mg} \sin \square_{\text {the }}$ block will be at rest.
52. A particle of mass 500 g is at rest. It is free to move along a straight line. The power delivered to the particle varies with time according to the following graph :

The momentum of the particle at $t=5 \mathrm{~s}$ is
(A) $25 \sqrt{\mathrm{Ns}}$
(B) $52 \sqrt{\mathrm{Ns}}$
(C) 5 Ns
(D) 5.5 Ns

SBIT.WEDkEDArea under the graph
25PD ${ }^{2}$
$2 m$
$25 \square \frac{P^{2}}{2 \square 500}$
2प500710 13
Pr5kgm/s
53. Dimensional formula for activity of a radioactive substance is
(A) MBLDT?
(咙 $7-6)^{194}=$

SBS. D.F for activity is 1םMOLOTZI

$$
\overline{\mathrm{T}}
$$

54. A ceiling fan is rotating around a fixed axle as shown. The direction of angular velocity is along \qquad —.

(A) $\square \hat{\jmath}{ }^{\wedge}$
(B) $\square \hat{\jmath}{ }^{\wedge}$
(C) $\square \hat{k}^{\wedge}$
(D) $\square \hat{k}^{\wedge}$

Ans. D
Sol. Direction of angular velocity is along -ve z axis.
55. A body of mass 7 kg is suspended by a weightless string which passes over a frictionless pulley of mass 2 kg as shown in the
figure. The mass is released from a height of 1.6 m from the ground. With what velocity does it strike the ground?

(A) $16 \mathrm{~ms}-1$
(B) $8 \mathrm{~ms}-1$
(C) $42 \sqrt{\mathrm{~ms}-1}$
(D) $4 \mathrm{~ms}-1$

Ans. B

$1 \square \frac{m_{2} R 2}{2} \square 2 \square \frac{M_{2}}{2} V_{2}$
migh $\lim _{\frac{1}{2}} \underset{2}{2}$

$$
\bar{\square} \quad \overline{2}
$$

VD4msㅁ
56. What is the value of acceleration due to gravity at a height equal to half the radius of the Earth, from its surface?
(A) $4.4 \mathrm{~ms}-2$
(B) $6.5 \mathrm{~ms}-2$
(C) zero
(D) $9.8 \mathrm{~ms}-2$

ABIS.ghn

$$
\mathrm{gR}^{2} \quad 4 \mathrm{~g} 4 \operatorname{\square D} 9.8 \mathrm{C} 4.4 \mathrm{~m} / \mathrm{s} 2
$$

57.

पR प 4299

A thick metal wire of density \square and length ' L ' is hung from a rigid support. The increase in length of the wire due to its own weight is ($Y=$ Young's modulus of the material of the wire)
(A) $\frac{\mathrm{DgL}}{\mathrm{Y}}$
(B) $\frac{1 \square}{2} \frac{g L 2}{Y}$
2(C) $\frac{\square g L}{Y}$
(D) 1 DgL 2
$\overline{4 Y}$

Ans. B
Sol. Increase in weight due to its own weight = 2ag
$\square \frac{\mathrm{Z} \square \mathrm{g}}{2 \mathrm{y}}$
58. Water flows through a horizontal pipe of varying cross-section at a rate of $0.314 \mathrm{~m} 3 \mathrm{~s}-1$. The velocity of water at a point where the radius of the pipe is 10 cm is
(A) $0.1 \mathrm{~ms}-1$
(B) $1 \mathrm{~ms}-1$
(C) $10 \mathrm{~ms}-1$
(D) $100 \mathrm{~ms}-1$

Ans. C
Sol. QAV
$0.314 \mathrm{D} \mathrm{r} . \mathrm{V}^{2}$
$0.314 \square 3.1410 \square \quad \mathrm{a} 2 \mathrm{~V}$
V 10 ms 7
59. A solid cube of mass m at a temperature DOis heated at a constant rate. It becomes liquid
熋mperatureq temperature C 2 .
Let s1 and s2 be specific heats in its solid and
liquid states respectively. If Lf and Lv are latent heats of fusion and vaporisation respectively, then the minimum heat energy supplied to
the

(D) ms 매ำ

Ans. C
Sol. Heat energy supplied

Q m msㄴำ

60. One mole of an ideal monoatomic gas is taken round the cyclic process MNOM. The work done by the gas is

(A) 4.5 POVO
(B) 4 POVO
(C) 9 POVO
(D) 2 POVO

Ans. D
Sol. Work done $W=\frac{10 B}{2}$ BaseDheight

2
WL2POVO

